Galois closures of quartic subfields of rational function fields
نویسندگان
چکیده
منابع مشابه
Densities of Quartic Fields with Even Galois Groups
Let N(d,G,X) be the number of degree d number fields K with Galois group G and whose discriminant DK satisfies |DK | ≤ X. Under standard conjectures in diophantine geometry, we show that N(4, A4, X) X2/3+ , and that there are N3+ monic, quartic polynomials with integral coefficients of height ≤ N whose Galois groups are smaller than S4, confirming a question of Gallagher. Unconditionally we hav...
متن کاملSubfields of Ample Fields I. Rational Maps and Definability
Pop proved that a smooth curve C over an ample field K with C(K) 6= ∅ has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. As a consequence we gain insight into the structure of existentially definable subsets of ample fields. In particular, we prove that a perfe...
متن کاملOn the torsion of rational elliptic curves over quartic fields
Let E be an elliptic curve defined over Q and let G = E(Q)tors be the associated torsion subgroup. We study, for a given G, which possible groups G ⊆ H could appear such that H = E(K)tors, for [K : Q] = 4 and H is one of the possible torsion structures that occur infinitely often as torsion structures of elliptic curves defined over quartic number fields. Let K be a number field, and let E be a...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولComputation of Galois groups over function fields
Symmetric function theory provides a basis for computing Galois groups which is largely independent of the coefficient ring. An exact algorithm has been implemented over Q(t1, t2, . . . , tm) in Maple for degree up to 8. A table of polynomials realizing each transitive permutation group of degree 8 as a Galois group over the rationals is included.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2014
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2013.11.005